Jump to content

Generalised ISISf: Difference between revisions

From Lattice Assumption Zoo
Init
 
m Add non-existing links
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
The Generalised ISIS<sub>f</sub> assumption (GenISIS<sub>f</sub>) was introduced by Dubois, Klooß, Lai, and Woo in 2025.<ref>Dubois, A., Klooß, M., Lai, R.W. and Woo, I.K. [https://eprint.iacr.org/2025/356.pdf Lattice-based proof-friendly signatures from vanishing short integer solutions]. ''IACR International Conference on Public-Key Cryptography.'' Cham: Springer Nature Switzerland, 2025.</ref> As the name suggests, it is a generalisation of the ISISf assumption introduced in 2023.<ref name=":0">Bootle, J., Lyubashevsky, V., Nguyen, N.K. and Sorniotti, A. [https://eprint.iacr.org/2023/560.pdf A framework for practical anonymous credentials from lattices]. ''Annual International Cryptology Conference''. Cham: Springer Nature Switzerland, 2023.</ref> It removes two restrictions imposed by ISIS<sub>f</sub>, which enables reducing to GenISIS<sub>f</sub>. Furthermore, GenISIS<sub>f</sub> inherits the ISIS<sub>f</sub> framework to generically generate constructions for several primitives.  
The Generalised ISIS<sub>f</sub> assumption (GenISIS<sub>f</sub>) was introduced by Dubois, Klooß, Lai, and Woo in 2025.<ref name=":2">Dubois, A., Klooß, M., Lai, R.W. and Woo, I.K. [https://eprint.iacr.org/2025/356.pdf Lattice-based proof-friendly signatures from vanishing short integer solutions]. ''IACR International Conference on Public-Key Cryptography.'' Cham: Springer Nature Switzerland, 2025.</ref> As the name suggests, it is a generalisation of the [[ISISf|ISISf assumption]] introduced in 2023.<ref name=":0">Bootle, J., Lyubashevsky, V., Nguyen, N.K. and Sorniotti, A. [https://eprint.iacr.org/2023/560.pdf A framework for practical anonymous credentials from lattices]. ''Annual International Cryptology Conference''. Cham: Springer Nature Switzerland, 2023.</ref> It removes two restrictions imposed by ISIS<sub>f</sub>, which enables reducing to GenISIS<sub>f</sub>. Furthermore, GenISIS<sub>f</sub> inherits the ISIS<sub>f</sub> framework to generically generate constructions for several primitives.  


== Formal Definition ==
== Formal Definition ==


=== GenISIS<sub>f</sub> ===
=== GenISIS<sub>f</sub> ===
TODO
Let <math>(n,m,d,q,\beta,k,s)</math> be public parameters, matrix <math>\mathbf{A} \in \mathcal{R}_q^{n \times m}</math> be chosen uniformly at random, <math>f</math> be a keyed function <math>f: \mathcal{K} \times D \rightarrow \mathcal{R}_q^n</math>, and <math>\chi</math> be a distribution over <math>D</math>. The challenger chooses a key <math>\kappa \leftarrow \mathcal{K}</math> uniformly and generates <math>k</math> hints <math>(x_i, \mathbf{s}_i)</math> in the following way.
 
* <math>x_i \leftarrow \chi</math>
* <math>\mathbf{s}_i \leftarrow \mathbf{A}_s^{-1}(f(\kappa, x_i))</math>
 
Given the matrix <math>\mathbf{A}</math>, the key <math>\kappa</math>, and the set of hints <math>\{ (x_i, \mathbf{s}_i) \}_{i \in [k]}</math>, the adversary is asked to find a new tuple <math>(x^*, \mathbf{s}^*) \in D \times \mathcal{R}^m</math> satisfying <math>\mathbf{A} \cdot \mathbf{s}^* = f\left( \kappa, x^*\right) \bmod q \land 0 < \lVert \mathbf{s}^* \rVert \leq \beta \land (x^*, \mathbf{s}^*) \notin \left\{ (x_i, \mathbf{s}_i)_{i \in [k]} \right\}.</math>
 
'''Intuition.''' Compared to ISIS<sub>f</sub>, GenISIS<sub>f</sub> allows hints to be chosen from any distribution <math>\chi</math> over <math>D</math> instead of them needing to uniformly distributed over <math>[N]</math>. Otherwise, GenISIS<sub>f</sub> does not rely on a statically chosen function <math>f</math>, but a keyed function - or a family of functions, of which a specific function is chosen at runtime.


=== Interactive GenISISf ===
=== Interactive GenISISf ===
TODO
Let <math>(n,m,d,\ell_m, \ell_r,q,\beta_s, \beta_m,s)</math> be public parameters, matrices <math>\mathbf{A} \in \mathcal{R}_q^{n \times m}, \mathbf{C} \in \mathcal{R}_q^{n \times (\ell_m + \ell_r)}</math> be chosen uniformly at random, <math>f</math> be a keyed function <math>f: \mathcal{K} \times D \rightarrow \mathcal{R}_q^n</math>, <math>\chi</math> be a distribution over <math>D</math>, <math>\mathcal{M} = \emptyset</math>, and a uniformly chosen key <math>\kappa \in \mathcal{K}</math>. Given the matrices <math>\mathbf{A}, \mathbf{C}</math>, and the key <math>\kappa</math>, an adversary is able to query an oracle <math>O_\text{pre}</math> adaptively, which on input <math>\mathbf{m} \in \mathcal{R}^{\ell}</math>  proceeds as follows.
 
# if <math>\lVert \mathbf{m} \rVert > \beta_m</math> then return <math>\perp</math>
# <math>x \leftarrow \chi</math>
# <math>\mathbf{s} \leftarrow \mathbf{A}_s^{-1}\left( f(x) + \mathbf{C} \cdot \mathbf{m} \right)</math>
# <math>\mathcal{H} \leftarrow \mathcal{H} \cup \{ x, \mathbf{s}, \mathbf{m} \}</math>
# return <math>(x,\mathbf{s})</math>
 
An adversary is asked to find a new tuple <math>(x^*, \mathbf{s}^*, \mathbf{m}^*)</math> satisfying <math>( x^*, \mathbf{s}^*, \mathbf{m}^* ) \notin \mathcal{H} \land \mathbf{A} \cdot \mathbf{s}^* = f( x^* ) + \mathbf{C} \cdot \mathbf{m} \land 0 < \lVert \mathbf{s}^* \rVert \leq \beta_s \land \lVert \mathbf{m}^* \rVert \leq \beta_m.</math>
 
'''Intuition.''' Compared to the interactive version of ISIS<sub>f</sub>, interactive GenISIS<sub>f</sub>  introduces a "strong unforgeability" flavour.


== Hardness of GenISIS<sub>f</sub> and its interactive version ==
== Hardness of GenISIS<sub>f</sub> and its interactive version ==
TODO
Dubois et al.<ref name=":2" /> provide a translation of Theorem 3.3 to GenISIS<sub>f</sub> provided by Bootle et al.<ref name=":0" />, which states that interactive ISIS<sub>f</sub> is at least as hard as ISIS<sub>f</sub>.
 
Otherwise, the authors<ref name=":2" /> show in Theorem 7 that GenISIS<sub>f</sub> is equivalent to the sEUF-RMA experiment for [[Vanishing SIS|vSIS]]-based signatures, which are introduced in the same work.


== Constructions based on GenISIS<sub>f</sub> ==
== Constructions based on GenISIS<sub>f</sub> ==
Line 25: Line 44:
* [[One-More-ISIS]]
* [[One-More-ISIS]]
* [[Randomised One-More-ISIS]]
* [[Randomised One-More-ISIS]]
* [[Vanishing SIS]]


== References ==
== References ==
<references />
<references />

Latest revision as of 13:26, 27 August 2025

The Generalised ISISf assumption (GenISISf) was introduced by Dubois, Klooß, Lai, and Woo in 2025.[1] As the name suggests, it is a generalisation of the ISISf assumption introduced in 2023.[2] It removes two restrictions imposed by ISISf, which enables reducing to GenISISf. Furthermore, GenISISf inherits the ISISf framework to generically generate constructions for several primitives.

Formal Definition

GenISISf

Let (n,m,d,q,β,k,s) be public parameters, matrix 𝐀qn×m be chosen uniformly at random, f be a keyed function f:𝒦×Dqn, and χ be a distribution over D. The challenger chooses a key κ𝒦 uniformly and generates k hints (xi,𝐬i) in the following way.

  • xiχ
  • 𝐬i𝐀s1(f(κ,xi))

Given the matrix 𝐀, the key κ, and the set of hints {(xi,𝐬i)}i[k], the adversary is asked to find a new tuple (x*,𝐬*)D×m satisfying 𝐀𝐬*=f(κ,x*)modq0<𝐬*β(x*,𝐬*){(xi,𝐬i)i[k]}.

Intuition. Compared to ISISf, GenISISf allows hints to be chosen from any distribution χ over D instead of them needing to uniformly distributed over [N]. Otherwise, GenISISf does not rely on a statically chosen function f, but a keyed function - or a family of functions, of which a specific function is chosen at runtime.

Interactive GenISISf

Let (n,m,d,m,r,q,βs,βm,s) be public parameters, matrices 𝐀qn×m,𝐂qn×(m+r) be chosen uniformly at random, f be a keyed function f:𝒦×Dqn, χ be a distribution over D, =, and a uniformly chosen key κ𝒦. Given the matrices 𝐀,𝐂, and the key κ, an adversary is able to query an oracle Opre adaptively, which on input 𝐦 proceeds as follows.

  1. if 𝐦>βm then return
  2. xχ
  3. 𝐬𝐀s1(f(x)+𝐂𝐦)
  4. {x,𝐬,𝐦}
  5. return (x,𝐬)

An adversary is asked to find a new tuple (x*,𝐬*,𝐦*) satisfying (x*,𝐬*,𝐦*)𝐀𝐬*=f(x*)+𝐂𝐦0<𝐬*βs𝐦*βm.

Intuition. Compared to the interactive version of ISISf, interactive GenISISf introduces a "strong unforgeability" flavour.

Hardness of GenISISf and its interactive version

Dubois et al.[1] provide a translation of Theorem 3.3 to GenISISf provided by Bootle et al.[2], which states that interactive ISISf is at least as hard as ISISf.

Otherwise, the authors[1] show in Theorem 7 that GenISISf is equivalent to the sEUF-RMA experiment for vSIS-based signatures, which are introduced in the same work.

Constructions based on GenISISf

Bootle et al.[2] provide a framework to generically build the following constructions from any interactive ISISf instance. As any ISISf instance is also a GenISISf instance, GenISISf inherits this framework.

Related Assumptions

References

  1. 1.0 1.1 1.2 Dubois, A., Klooß, M., Lai, R.W. and Woo, I.K. Lattice-based proof-friendly signatures from vanishing short integer solutions. IACR International Conference on Public-Key Cryptography. Cham: Springer Nature Switzerland, 2025.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Bootle, J., Lyubashevsky, V., Nguyen, N.K. and Sorniotti, A. A framework for practical anonymous credentials from lattices. Annual International Cryptology Conference. Cham: Springer Nature Switzerland, 2023.
  3. 3.0 3.1 Lyubashevsky, Vadim, Gregor Seiler, and Patrick Steuer. The LaZer library: Lattice-based zero knowledge and succinct proofs for quantum-safe privacy. Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security. 2024.